
In an earlier pager 5 1 1 , there was developed a method for the con- 
struction of periodic solutions of a nob-autonomous system with one 
degree of freedom for the case of simple roots of the equations of 
fundamental amp1 itudes. In the present work there is considered the 
general case when the roots of these equations may be multiple roots. 
A solution containing secular terms is constructed for the case When 
resonance with unlimited sm~litude of os~~llat~o~s occurs. 

f. We shall consider a non-autonomous oscillatory system with one de- 
gree of freedom 

Let.. us assurrie that the function f(t) is a continuous function, of 
period 2n in t, and that its Fourier expansion does not contain harmonics 
of the nth order (m-an integer).‘Ihe function F(t, x, x*, ~1 is assumed 
to be analytic in the variables x, 12’ I p , ad ta be a c~nti~~o~s periodic 
function of period 2n in C. The quantity ~1 is a small parameter, which 
for the sake of definiteness we assume to be positive. 

Let us separate from the function F(t, x, x’ , p) the linear term in x 
e.nrl the harmonics of order n: 

‘Ihe coefficients c, V, and X are assumed to be constants (independent 
of ~1 such that c 4: II, and v2 + X2 f- 0. The linear system will thus have 
the frequency k, where k is not an integer, The w~ertl~r~~ationn of the 
system 
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m2- k2 = GIL (1.2) 

is therefore of the order of magnitude of the small parameter p. 

The equation thus generated 

z; $ m2x = f(t) (1.3) 

has a general solution wl~ich can be written in the following convenient 
form: 

so(t) =(9(t) + A,cosmt+ zsinmt V-4) 

The function $(t) represents the forced oscillations of the system 
(1.3) under the external force f(t). The last two terms in the fonula 
(1.4) represent the free oscillations of that system. ‘Ihe generated equa- 
tion thus has a family of periodic solutions depending on two arbitrary 
constants A, and B,. 

We shall seek the periodic solutions of the fundamental equation (1.1) 
by the use of the small parameter method. !Ve choose the following initial 
conditions: 

2 (0) = 50 (0) + B1, Z’ (0) = “0 (0) + P2 (1.5) 

where the quantities /?, and /3, are functions of Jo, which take on the 
value zero -when ~1 = ti.?%e soiution of (1.1) wi11 thus be of the form 

We shall try to determine the structure of the 
cl), Let us assume that this function has a series 

function x(t, &, &, 
expansion in positive 

powers of the parameters pl, /3* and p, Let us fin{1 those terms of this 
series which are independent of p1 and /32 but do depend on CL. It is 
easily seen that all these terms vanish, except those that are linear in 

/3, ““dP** This is due to the fact that the coefficients of these terms 
satisfy second order linear homogeneous differential equations with 
vanishing initial conditions. After the terms which are linear in p1 and 
p2 have been computed, the solution of (1.1) can be represented in the 
form 

x(t, PI, j$+, p) = f+(t)+ A,cos mt + 2 sin mt+ ~l~~~mt + k sin mt+ 

It is necessary to note that all C,(t) and their derivatives with res- 
pect t0 PI ad 4 are taken when /!I1 = & = p = 0. 
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It is not difficult to prove that the following fdrmulas hold for the 

function x(t, &, &, ~1 and its derivatives with respect to time 

(1.7) 

For n = 0 the formulas are obvious. For n f 0 thky can be proved by 

complete mathematical induction analogous to that corresponding to 

autonomous systems C 2 1 . For this purpose the following equations are 

used 

‘Ibese formulas can be obtained by considering the coefficient of 

iqB:P+ l in the expansion of the function n( t , PI, &, p 1. 

Ch the basis of the above established property of the function n(t, 

B,, &, p ), one can rewrite the formula (1.6) in the following form: 

(1.8) 

+ 5 c,(t) + 2 p1+ 2 p2+ ; gi v+ [ g& p1p2+ ; 2 p2”+ . ..I P” 
n-1 

Hence, for the construction of the function x(t, /L$, &, p) one has to 

know how to compute the coefficient Cn(t) of tn. The remaining coeffi- 

cients of the series are then found by successive differentiation of 

C,(t) with respect to A, and B,. 

‘Ihe coefficients C,(t) satisfy the equation 

d2C, (t) 
- + m2 C, (0 = H,(t), dt2 

with the initial conditions C,(O) = 0, C,,* (0) = 0. 

The quantity S/dp is the total partial derivative of the function 

F(t, z, X’, ~1 with respect to the parameter /.L. We obtain 

C,,(t)=&\H.(t,)sinm(t-t,)dtl, C,*(t)=\H,(h)cosm(t-h)df,(l.V 

0 0 

In the explicit form, the first three functions H,,(t) are given as 

follows 12 1 : 
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Hl (t) = F (4 20, 20.9 0) (1 .lO) 

ff2 (0 = (E), Cl + (g). Cl’ + (F>, (1.11) 

H,(t) = ~(~),C12$. +(g), Go2 + 4 (gk), + (1.12) 

aeF +(- ’ axax*/, c,c,’ + (g&)0 c, + (&),cl’.+ (3 c2 + (g),c2 

The subscript 0 at the parentheses indicates that the symbols x, no, 
and p have been replaced by x0, x0 l and 0, respectively, in the deri- 

vatives of the function F. 

2. ‘Ihe conditions of periodicity of the function r(t, /3,, /LIZ, p) and 
its derivative with respect to time can be expressed in the following 

form with the aid of the initial conditions (1.5): 

Let us substitute ~(217) and x* (2s) into the left-hand sides of these 

equations by means of the formula (1.8). After some cancellations there 

result the equation 

and an analogous one 

(2.2) 

(2.3) 

The functions C, and C,,’ and their derivatives with respect to A, and 

B, are taken with t = 217, PI = & = ~1 = 0 in formulas (2.2) and (2.3). 

Let us assume that the quantities p1 and &, can be expanded in power 

series of p, i.e., 

PI = i AN’, B2 = i Bnp” 

n=i TI=l 



We now substitute the expressions for @I and p2 into the left-hand 
sides of equations (2.2) and (2.3) and express them as power series in &. 

Next, we equate to zero the coefficients of these series and arrange the 
resulting equations in pairs. lbe terms which are independent of p yield 

the following equations 

c, (25r) = 0, Cl” (2n) = 0 (2.4) 

‘Ihe coefficients of the first powers of p yield the equations 

c, (lh) -t_ s A, + gyl = 0, CJ2n) + z A, + ‘$$ B, = 0 (2.5) 
0 0 

Ihe coefficients of p2 lead to the equations 

Ihe coefficients of c,~ yield 

and analogous equations in which the C, are replaced everywhere by (;n’. 
The other equations can also be written down quite easily. 

Ihe equations (2.4) represent the equations for the determination of 

the constants A, and B,. If these equations have simple roots, the func- 

tional determinant 

will be di’fferent from zero. In this case it is possible to determine A, 
and B 

a 
from the equations (2.5). Furthermore, by means of equations (2.6) 

and ( ,?I, one can find A, and B,, and so on. All these equations are 

linear in A,, and Ba, and have the same determinant A 1. 

3. If the equations (2.4) have multiple roots, then 
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A I=0 (3-f) 

If there is to exist a periodic solution with a finite amplitude in 
this case, then the following additional condition has to be satisfied: 

Making use of condition (3.1) 1 one can eliminate A, and B, from equa- 
tions (2.6) and f2,?). Solving the resulting equations sim~lt~eously 
with (2.51, one can 

For example, the 
quadratic equation 

The coefficients 

determine A, and B,. 

coefficient A, is found to have to satisfy the 

&A,” -+- &A, + P, = 0 

of this equation have the following values: 

a*c1* de1 pI=a~[C2yg_LzJ_-_---- aw, ac; 1. awl* ac, 
0 0 0 aDo2 ad, a.4,aBo _ aB, QlJqJy+ ) 

We note that the coefficients of the equation (3.3) can be represented 
in different equivalent forms. young the value A,, it is not difficult 
to find B, by means of one of the e~ations (2,51, 

In order to find the coefficients A, and Bz we multiply the equation 
(2.8) by C2*, The analogous equation, obtained through a replacement of 
every Ca by CR*, we multiply by C2’ Next we add the two resulting equa- 
tions. ‘ihen we also add equations (2.6) and (2+?). lhe system of equa- 

tions thus obtained will be linear in A, and 82. Let us find the deter- 
Monet of this system. After some si~lifi~ations we obtain 

n,* = v* + C2’) &? (3.4) 

where 
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A _ ac2 ac,- 2 x2* acl ac2 ac; 
aA aB, 

----r 
aA, aB, 

, aci acl , 
aB, dA, aB, aA, -I- 

+Al(~~~_~~~,_a~~~+a~CaB + 
0 0 0 00 0 

(3.5) 

It is not difficult to convince oneself that the systems of equations 

for the determination of An and Ba (n = 3, 4, . . .I will also be linear. 

‘lhe determinant of all these systems will be AZ* . 

If the equation (3.3) has two real roots, there will exist two periodic 

solutions corresponding to a pair of double roots of the equation of the 

fundamental amplitudes. In this case one can speak of the bifurcation of 

the solution of the generating equation. 

‘lhe condition for the existence of triple roots of the equations (2.4) 

of fundamental amplitudes is the vanishing of the functional determinant 

that is equal to twice the coefficient PO in equation (3.3). 

In this case one of the roots of equation (3.3) becomes infinite. 

Hence, one of the solutions of equation (1.1) will be periodic, while the 

other will be unbounded. 

In all cases when there exists a periodic solution of 

solution can be represented in the form of a power series 

5 (1) = 50 (t) + p1 u> + p2”a (0 + - * * 

l-h e generating solution n,(t) is determined by formula 

coefficients z,(t) are computed by means of the formulas 

x1 (t) = Al cos mt + ‘2 sin mt + C, (t) 

(1.1)) this 

in p: 

(3.6) 

(1.4). Ihe 

(3.71 

x,(t)=A,cosmt+$sinmt+A,~ +B1$$ 
0. 

o -t&(t) (3.8) 

x3 (t) = AS cos mt + zsinmt +A, v +B,%$ +f%.&A,~+ 
0 

+ a A,& + +!?i& B,2+@?!.$ + B 

0 0 0 0 
1 ---y f c*(t) a;;(t) (3.9) 

and so forth. The question on the radius of convergence of the series 

(3.6) is not considered in this article. 

4. Let us consider the stability of the periodic solution of equation 

(1.1) for the case of multiple roots of the equation of fundamental 
amplitudes. ‘lhe equation of variations for equation (1.1) is 
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We denote by y,(t) and y,(t) the particular solutions of the equation 

of variations which form a fundamental system. 'Ihese solutions satisfy 

the initial conditions 

Yl(O) = 1, Yl’ (0) = 0, Y,(O) = 0, Y2' (0) = 1 

Let us consider the characteristic equation for the equation of vari- 

ations 

PZL 2A'p+B'=O 

'Ihe coefficients of this equation, as is well known, have the follow- 

ing values 

A'= -$1(2~) + Y,'(2X)19 B' = ?A24 Y2'(2x)--2(2x)yl"(2x) 

In order that the periodic solution of equation (1.1) be asymptotic- 

ally stable, it is necessary and sufficient that the inequality Ip 1 < 1 
be satisfied. For the equation of variations (4.1) this condition reduces 

to the following two conditions [ 11 : 

B -2A'+l>O. lB'l<i (4.2) 

We shall seek y,(t) and y,(t) in the form 

Yl PI = 910 (t) + I%1 0) -t P2Y12 F) + - ’ l 

Y2 (t) = Y20 0) + PY21 (t) + P2Y22 (t) -!- l - * 

For the function y,,(t), y,,(t), y,,(t) we have the following equations 

* + may,, = 0, 2.g + may11 = (g), Yl, + (g,g, YlO’ 

* + m%12 = S(g), ~~2 4- (G). ~~~~~~~ + 
+ ; (g2), Ylo'2 + (g), Yll + (E), Yl,’ 

Analogous equations hold for y,,(t), y,,(t), y,,(t). 'lhe initial con- 

ditions for all these equations are 

Yl, (0) = 1, Yl,’ (0) = 0, Yl, jQ = 0, Ym’ (0) = 0 

Y20 (0) = 0, Y2,’ $9 = 1, Y2n (0) = 0, Y,,’ (0) = 0 (n = 1,2, 3...) 

Solving these equations, we obtain 
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After some c~utations, the left-hand side of the first of the in- 
qualities (4.2) can be shown to take the form 

The quantities A1 and A2are determined by means of formulas (2.9) and 
(3.5). In the case of simple roots of the equation of the fundamental 
amplitudes, one of the conditions for asymptotic stability will be 

A,>0 W% 

In case of double roots, this condition is replaced by 

Aa > 0 (4.6) 

In each of these cases, it is necessary to add the second condition 
of (4.2) t which reduces to the inequality 

5.. We shall next consider some periodic solutions of equation Cl. 11. 
e parameters A, and B, are not roots of the equation (2.4), the 

function I,, which enters into the expansion (3.61, will in general 
have the form 

3cl (t) = 2p (t) + tzp (t) 

$2 (t) = 3$0) ft) + tzp (t} + ta2p (S) 
, . . . ...* . . . . . . . . . . L *. 

%I (q = z,(O) (t) + tsJ1) + . . . + t%p (1) 

where all the xn ~~~~~} are periodic functions of period 2 R in t, Hence, 
the solution of equation (1.1) in this case will have the following 
structure: 
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lhe functions an(l)(t, p) in formula (5.1) represent periodic functions 
of period 277 in t, which in the general case do not vanish when p = 0. 
All the coefficients An and Bn that appear in the initial conditions can 
be given in advance in this case. 

To each simple real root of the equation of fundamental amplitudes 
there corresponds a unique periodic solution of equation (1.1). If, how- 
ever, the roots are multiple ones, but the conditions (3.2) are not 
satisfied, then the equations (2.5) will yield infinite values for the 

coefficients A, and B . In this case, there will exist no periodic solu- 
tion of equation (1.1 j . We shall now try to find a solution which con- 
tains secular terms. 

The secular terms cannot occur in the coefficient of the first power 
of p in the expansion (3.6), for the equations of fundamental amplitudes 
are obtained from the condition for the periodicity of this coefficient. 
‘lherefore, the secular terms can first appear in the coefficient of p2. 

The functions C (t), which occur in the coefficients x,,(t) of the 
periodic solution 73.6) f o equation (1.1)) are periodic functions. This 
is due to the fact that the quantities C,(2n) and C,*(2n) and their 
derivatives with respect to A,, and B, are subjected to special conditions. 
If these conditions are not imposed, then (as is easily verified) the 
functions C,,(t), determined by formulas (1.9), can be represented in the 
form 

C,(t) = C,O (t) + & [ C, (27~) cos mt -/- q sin mt] (5.2) 

where Cno(t 1 is the periodic part of the function. 

In the case under consideration, the function n,(t), will have, in 
view of (3.8) and (5.2), the following form (the subscript zero has been 
dropped at C,(t) and C,(t)): 

x2(t)=A,cosmt-+~sinmt+A~~+Bl$&@ 
0 0 + 

+ C, (t) + & ( M cos mt + L sin mt ) (5.3) 

M= A,~+B,;++C,, N = A 
0 0 

1 ~+B,~+Cz* 
0 

(5.4) 
0 

The coefficients An and Bn, beginning with A, and B,, can be given in 
advance. However, the coefficients A, and B, are obtainable if one imposes 
auxiliary conditions on x,(t). let us consider the equation for the func- 
tion x,(t). Denoting the right-hand side of this equation by C$(t), we 
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separate the periodic terms which enter into it 

bt us impose the condition that the function x (t) shall not contain 

secular terms with t 2. ‘Ihis leads to the condition2 

0 
These conditions are equivalent to two equations which determine the 

coefficients A, and B1: 

Mg+N 
0 

$$+-C,=O, M;~+,‘V;$+C,‘=O (5.5) 
0 

We introduce the following notation: 

(5.6) 

The solutions of equations (5.5) are 

The quantities M and N are given by 

It is interesting to note that the same result is obtained if one does 

not impose on the function z3(tE any conditions, but instead restricts 

the function zn+ 1(t) to the same terms which ace contained in the pre- 

ceding function x,(t), i.e. to the terms with t’-I. 

The coefficients A2 and k$,and the succeeding ones, cannot be deter- 

mined from any co~d~t~o~s imposed on the functions x,Et), for snch con- 

ditions lead to ~~bo~~ded values of A2 and AZ’ These coefficients can 

only be given in advance. 

The formulas (5.73 and (5.8) have a meaning only under the condition 

that the quantity S in (5.6) be different from zero, Thus, the indicated 

forra of the solution is not applicable* in particular, for the Case of a 

conservative system, 

Hence, in the considered case, the solution of equation (1,1> has the 
following structure: 
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2 ct> = Q3(*) (t, p) + p2tQ)1(‘) (t, p) + pVQ),(?) (t, p) + . . , (5.9) 

vhere the functions @ (‘1 (t, p are determined in a manner analogous to 1 

the one used for the determination of @,,(l)(t, /.L) in formula (5.1). 

If conditions (3.2) are fulfilled, then the quantities M and N will 
vanish and the function x2 (t) will be periodic. The coefficients A, and 
B, determined by the formulas (5.7) satisfy equations (2.5). They do 
not, however, satisfy the infinite system of equations which determine 
the set of coefficients A and Bn. As is shown above, under the condition 
(3.2) one needs equation 73.3) and one of the equations (2.5) for the de- 
termination of the coefficients A, and B,. Should the equations (2.4) have 
triple roots, one of the solutions of equation (1.1) becomes unbounded. 
In this case the secular terms can not occur earlier than in the function 
x3(t). 

‘Ihe considered cases, when the coefficients A, and B, satisfy equa- 
tions (2.4) but the solution of equation (1.1) contains secular terms, 
are the resonance cases. In addition to those considered, one can 
point out also other types of resonance, when, for example, the coeffi- 
cients A, and B, have finite values, while the coefficients A, and B 

become unbounded, and so forth. This will occur under condition (3.2 f if 
the equations (2.4) have multiple roots and the determinant A 2 * 
becomes zero. 

From the above it follows that the basic difference between the re- 
sonance solutions and the periodic solutions is the appearance in the 
resonance solutions of secular terms within the coefficients of cc2 and 
of the higher powers of the expansion (3.6), while in the non-resonance, 
non-periodic solutions these secular terms already appear in the coeffi- 
cient of the first power of p. 

6. Let us consider some exBnples*. We make the preliminary remark that 
all the results presented above also remain valid for the nth order re- 
sonance. 

f. Oscillations in the neighborhood of the resonance in a regenerative 
receiver. In this case the equation of oscillations can be reduced to the 
form 

d2x dx 
dta +x=p vcost+hsint+cx+(a+@+@)d~ 

I 

We have the following equations of fundamental amplitudes 

l All examples are taken from the book by Malkin [l 1. 
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v + CA0 + aB, + + yB, (A,* + B,*) = 0 

h + cB, - aA, - t yd, (do2 + B,*) -0 (6.2) 

The condition for double roots of equation (6.2) leads to the follow- 

ing relation between the coefficients: 

2772 (v* + A*)” + 16ay (C.+ f 9c*) (~2 + h*) i_ 64~2 (a* + c2)2 = o (6.3) 

The roots of the equation (6.2) are thus found to be 

A 
0 

= 9yh (v2+h2)+ 32ac*h-8c (3~2 -a*) v 
6ay (v* + A*) + 16~2 (a” + ~2) 

B 
0 

= _ 9-p (v* -I- h*) + 32ac% + 8c (39 - a*) h 

6ay (v* + A*) + 16~2 (a2 + ~2) 

In the presence of relation (6.3) there exists a resonance solution 

with secular terms. Periodic solutions will not exist. 

2. Resonance of the second type in a regenerative receiver. We take 

the equation of oscillations in the following form: 

$+z=-3 vcosZt-33hsin2t+(* cz+(a+pz+;z 
L 2) ($1 (6.4) 

The amplitude equations will be 

c-4, + aBo + $ ,E (AA, - vB,) + + rBo [v* + A* + f (no2+Bo2)] = 0 

cBo - aAo - $ p (VA, + AB,) - + ;A, [~2 + h* + f (Ao2+ B,*j] = 0 
(6.5) 

The condition under which there will exist double roots for these 

equations is 
3” (v2 + h2) - 4c* = 0 (6.6) 

Let us consider some particular cases (the coefficients a and y have 

different signs, A,,* > 0, BO* > 0). 

(a) u = 0. Two sub-cases can arise: 

A0 = 0, B,*=-22)12-4;, $h = 2c 

B, = 0, A,,*=-22A*-4;. ph =-2c 

Under these conditioris there will exist resonance solutions of the 

type (5.9). In the presence of the following auxiliary relation 

5i3* (32~ -oh*) = 7 (60a* + 26ay)i* - 7T2h4) 

between the coefficients, the condition (3.2) will be fulfilled, and, 
hence, there will exist a periodic solution. 
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(b) x = 0. Here also two sub-cases can occur: 

A,= Bill B+-v3-_2+, pJ= 26 

A o’--- B,, B&d-27, fh=-2c 

This corresponds to the resonance solutions vpith secular terns, When 
the additional condition 

5fP (32a - pa) = y (60r.G + 26a+ - 7yV) 

is fulfilled, there will exist a periodic solution. 

3, Duffin’s problcnr in quasilinear farau2ation, The equation of 
oscillations is 

i&v 
dts +x=p(vcost+hsint+cx+~x’l) (6.7) 

The equations of fundamental amplitudes are 

Y +CA, + $744, fA,B + Boa) = 0, hf ~~~~~~B*~~~~~~*~~=~ 681 

The condition for multiple roots reduces to the following relation 
between the coefficients of the equation: 

813 (va + ha) + 16ca = 0 (6.9) 

Thor coefficients c and y must have opposite signs. The the raots of 
the e~~~ti~~ (6i.8) will be 

Under condition (6.9) there can exist no periodic solution. 

‘lbe ambles considered above sbow that the ~~~n~~~~ of ~~~~n~~e 
occurs, as a rule, when c f 0, i.e. when the ~~~~turb~ce~ of the system 
(1.2) is not zero. In case of a fundamental resonance this means that 

the frequency of the natural (characteristic) oscillations of the linear 

system with resonance, does not usually coincide with the frequency of 
the disturbing force, In case of nth type of resonance the frequency of 
the natural ~~ha~act~ristic~ oscillations with resonance, is usually not 

l/n times the frequency of the disturbing force h being an integer). 
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